If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.01x^2+0.05x-33=0
a = 0.01; b = 0.05; c = -33;
Δ = b2-4ac
Δ = 0.052-4·0.01·(-33)
Δ = 1.3225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.05)-\sqrt{1.3225}}{2*0.01}=\frac{-0.05-\sqrt{1.3225}}{0.02} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.05)+\sqrt{1.3225}}{2*0.01}=\frac{-0.05+\sqrt{1.3225}}{0.02} $
| 24+2x=5x-3 | | 7(3x+2)=16 | | 160+3w=195-2 | | -4(n-5)=23 | | 190-v=247 | | 13x-3.4=17.6+10 | | 184=69-w | | 116+2x+x+21.5=180 | | 5(1u+3)=50 | | 2(1+1)+3x=17 | | -3x+4=5-3 | | -2.5x=-15 | | 2x+2=2(5-3x) | | z=2-10 | | 8x+3=3x+31 | | 5(2x-1)=6x+31 | | .07x=25 | | 3(2x+5)=+3 | | y=5.8= | | -1/2x=1/6 | | 2x/7=154 | | 1/4x+3=-5x | | 12y+y=13 | | 3.9+t=4,5 | | (y+1)÷3=2 | | -3x+8-5x=218x | | 8q^2-10q=-3 | | y+1÷3=2 | | 12x-4(4x-1)=0 | | 0.6(d+18)=3d | | 6=c/42 | | 12x-1=2(6=5x)+7 |